M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma

نویسندگان

  • Bin Guo
  • Leilei Li
  • Jiapei Guo
  • Aidong Liu
  • Jinghua Wu
  • Haixin Wang
  • Jun Shi
  • Dequan Pang
  • Qing Cao
چکیده

M2 macrophages are a major component of the tumor microenvironment and are important promoters of tumor occurrence and progression. In this study, we detected large numbers of M2 macrophages in hepatocellular carcinoma tissues using immunohistochemistry and immunofluorescence. Moreover, upon oxaliplatin treatment, the M2 macrophages overexpressed interleukin-17, an important inflammatory cytokine, and thus inhibited oxaliplatin-induced apoptosis. By knocking down the interleukin-17 receptor and lysosome-associated membrane protein 2A (a key protein in chaperone-mediated autophagy) in hepatocellular carcinoma cells, we found that interleukin-17 stimulated chaperone-mediated autophagy, which further suppressed apoptosis upon oxaliplatin treatment. Chaperone-mediated autophagy induced tolerance to oxaliplatin treatment by reducing cyclin D1 expression; thus, cyclin D1 overexpression stimulated oxaliplatin-induced apoptosis. In addition, cyclin D1 expression was inhibited by interleukin-17, but increased when the interleukin-17 receptor was knocked down. Thus M2 macrophages in the hepatocellular carcinoma microenvironment generate large amounts of interleukin-17, which suppress oxaliplatin-induced tumor cell apoptosis by activating chaperone-mediated autophagy and in turn reducing cyclin D1 expression. These findings may facilitate the development of novel therapeutic strategies for chemorefractory liver cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy impacts on oxaliplatin-induced hepatocarcinoma apoptosis via the IL-17/IL-17R-JAK2/STAT3 signaling pathway.

The interleukin (IL)-17/IL-17 receptor (IL-17R) complex has been shown to be important for the regulation of inflammation; however, its role in the regulation of tumor processes has recently emerged as a research focus. The present study demonstrated that oxaliplatin was able to increase the levels of IL-17/IL-17R in hepatocellular carcinoma (HCC) patients and cells lines, and that it had impor...

متن کامل

Comparative Analysis of the Effects of Valproic Acid and Tamoxifen on Proliferation, and Apoptosis of Human Hepatocellular Carcinoma WCH 17 CellLin

Background: Histone deacetylation of tumor suppressor genes such as estrogen receptor alpha (ERα) can induce cancer, which is reversible by epi-drugs such as valproic acid (VPA). The previous result indicated that tamoxifen (TAM) induced apoptosis in hepatocellular carcinoma (HCC). This study was designed to assess the apoptotic and antiproliferative effects of VPA and TAM and also the ef...

متن کامل

In-vitro and In-vivo Antileishmanial Activity of a Compound Derived of Platinum, Oxaliplatin, against Leishmania Major

This study aimed to evaluate the antileishmanial efficacy of oxaliplatin against Leishmania major both in-vitro and in-vivo. The IC50, CC50, and SI of oxaliplatin against promastigotes, murine macrophages, Raw 264.7 cells, and intramacrophage amastigotes of L. major were investigated in-vitro. The effects of this drug on intrace...

متن کامل

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017